3,206 research outputs found

    A Variational Method in Out of Equilibrium Physical Systems

    Full text link
    A variational principle is further developed for out of equilibrium dynamical systems by using the concept of maximum entropy. With this new formulation it is obtained a set of two first-order differential equations, revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. In particular, it is obtained an extended equation of motion for a rotating dynamical system, from where it emerges a kind of topological torsion current of the form ϵijkAjωk\epsilon_{ijk} A_j \omega_k, with AjA_j and ωk\omega_k denoting components of the vector potential (gravitational or/and electromagnetic) and ω\omega is the angular velocity of the accelerated frame. In addition, it is derived a special form of Umov-Poynting's theorem for rotating gravito-electromagnetic systems, and obtained a general condition of equilibrium for a rotating plasma. The variational method is then applied to clarify the working mechanism of some particular devices, such as the Bennett pinch and vacuum arcs, to calculate the power extraction from an hurricane, and to discuss the effect of transport angular momentum on the radiactive heating of planetary atmospheres. This development is seen to be advantageous and opens options for systematic improvements.Comment: 22 pages, 1 figure, submitted to review, added one referenc

    A mutate-and-map protocol for inferring base pairs in structured RNA

    Full text link
    Chemical mapping is a widespread technique for structural analysis of nucleic acids in which a molecule's reactivity to different probes is quantified at single-nucleotide resolution and used to constrain structural modeling. This experimental framework has been extensively revisited in the past decade with new strategies for high-throughput read-outs, chemical modification, and rapid data analysis. Recently, we have coupled the technique to high-throughput mutagenesis. Point mutations of a base-paired nucleotide can lead to exposure of not only that nucleotide but also its interaction partner. Carrying out the mutation and mapping for the entire system gives an experimental approximation of the molecules contact map. Here, we give our in-house protocol for this mutate-and-map strategy, based on 96-well capillary electrophoresis, and we provide practical tips on interpreting the data to infer nucleic acid structure.Comment: 22 pages, 5 figure

    Microscopic Realization of the Kerr/CFT Correspondence

    Get PDF
    Supersymmetric M/string compactifications to five dimensions contain BPS black string solutions with magnetic graviphoton charge P and near-horizon geometries which are quotients of AdS_3 x S^2. The holographic duals are typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These same 5D compactifications also contain non-BPS but extreme Kerr-Newman black hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2, the near-horizon geometry coincides precisely with the right-moving temperature T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the Kerr/CFT correspondence. Moreover, at linear order away from maximality, one finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution and the associated thermal CFT entropy reproduces the linearly sub-maximal Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a finite-temperature quotient of a warped deformation of the magnetic string geometry. The corresponding dual deformation of the magnetic string CFT potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by Kerr/CFT.Comment: 18 pages, no figure

    Amyloid β-peptide directly induces spontaneous calcium transients, delayed intercellular calcium waves and gliosis in rat cortical astrocytes

    Get PDF
    The contribution of astrocytes to the pathophysiology of AD (Alzheimer's disease) and the molecular and signalling mechanisms that potentially underlie them are still very poorly understood. However, there is mounting evidence that calcium dysregulation in astrocytes may be playing a key role. Intercellular calcium waves in astrocyte networks in vitro can be mechanically induced after Aβ (amyloid β-peptide) treatment, and spontaneously forming intercellular calcium waves have recently been shown in vivo in an APP (amyloid precursor protein)/PS1 (presenilin 1) Alzheimer's transgenic mouse model. However, spontaneous intercellular calcium transients and waves have not been observed in vitro in isolated astrocyte cultures in response to direct Aβ stimulation in the absence of potentially confounding signalling from other cell types. Here, we show that Aβ alone at relatively low concentrations is directly able to induce intracellular calcium transients and spontaneous intercellular calcium waves in isolated astrocytes in purified cultures, raising the possibility of a potential direct effect of Aβ exposure on astrocytes in vivo in the Alzheimer's brain. Waves did not occur immediately after Aβ treatment, but were delayed by many minutes before spontaneously forming, suggesting that intracellular signalling mechanisms required sufficient time to activate before intercellular effects at the network level become evident. Furthermore, the dynamics of intercellular calcium waves were heterogeneous, with distinct radial or longitudinal propagation orientations. Lastly, we also show that changes in the expression levels of the intermediate filament proteins GFAP (glial fibrillary acidic protein) and S100B are affected by Aβ-induced calcium changes differently, with GFAP being more dependent on calcium levels than S100B

    Holography for chiral scale-invariant models

    Full text link
    Deformation of any d-dimensional conformal field theory by a constant null source for a vector operator of dimension (d + z -1) is exactly marginal with respect to anisotropic scale invariance, of dynamical exponent z. The holographic duals to such deformations are AdS plane waves, with z=2 being the Schrodinger geometry. In this paper we explore holography for such chiral scale-invariant models. The special case of z=0 can be realized with gravity coupled to a scalar, and is of particular interest since it is related to a Lifshitz theory with dynamical exponent two upon dimensional reduction. We show however that the corresponding reduction of the dual field theory is along a null circle, and thus the Lifshitz theory arises upon discrete light cone quantization of an anisotropic scale invariant field theory.Comment: 62 pages; v2, published version, minor improvements and references adde

    Somatostatin receptor expression, tumour response, and quality of life in patients with advanced hepatocellular carcinoma treated with long-acting octreotide

    Get PDF
    Octreotide may extend survival in hepatocellular carcinoma (HCC). Forty-one per cent of HCCs have high-affinity somatostatin receptors. We aimed to determine the feasibility, safety, and activity of long-acting octreotide in advanced HCC; to identify the best method for assessing somatostatin receptor expression; to relate receptor expression to clinical outcomes; and to evaluate toxicity. Sixty-three patients with advanced HCC received intramuscular long-acting octreotide 20 mg monthly until progression or toxicity. Median age was 67 years (range 28–81 years), male 81%, Child–Pugh A 83%, and B 17%. The aetiologies of chronic liver disease were alcohol (22%), viral hepatitis (44%), and haemochromatosis (6%). Prior treatments for HCC included surgery (8%), chemotherapy (2%), local ablation (11%), and chemoembolisation (6%). One patient had an objective partial tumour response (2%, 95% CI 0–9%). Serum alpha-fetoprotein levels decreased more than 50% in four (6%). Median survival was 8 months. Thirty four of 61 patients (56%) had receptor expression detected by scintigraphy; no clear relationship with clinical outcomes was identified. There were few grade 3 or 4 toxicities: hyperglycaemia (8%), hypoglycaemia (2%), diarrhoea (5%), and anorexia (2%). Patients reported improvements in some symptoms, but no major changes in quality of life were detected. Long-acting octreotide is safe in advanced HCC. We found little evidence of anticancer activity. A definitive randomised trial would identify whether patients benefit from this treatment in other ways

    A phase 1b open-label dose-finding study of ustekinumab in young adults with type 1 diabetes

    Get PDF
    Aim We assessed the safety of ustekinumab (a monoclonal antibody used in psoriasis to target the IL-12 and IL-23 pathways) in a small cohort of recent-onset (<100 days of diagnosis) adults with type 1 diabetes (T1D) by conducting a pilot open-label dose-finding and mechanistic study (NCT02117765) at the University of British Columbia. Methods We sequentially enrolled 20 participants into four subcutaneous dosing cohorts: i) 45mg loading-weeks 0/4/16, ii) 45mg maintenance-weeks 0/4/16/28/40, iii) 90mg loading-weeks 0/4/16 and iv) 90mg maintenance-weeks 0/4/16/28/40. The primary endpoint was safety as assessed by an independent data and safety monitoring board (DSMB) but we also measured mixed meal tolerance test C-peptide, insulin use/kg, and HbA1c. Immunophenotyping was performed to assess immune cell subsets and islet antigen-specific T cell responses. Results Although several adverse events were reported, only two (bacterial vaginosis and hallucinations) were thought to be possibly related to drug administration by the study investigators. At 1 year, the 90mg maintenance dosing cohort had the smallest mean decline in C-peptide AUC (0.1pmol/mL). Immunophenotyping showed that ustekinumab reduced the percentage of circulating Th17, Th1 and Th17.1 cells and proinsulin-specific T cells that secreted IFN-γ and IL-17A. Conclusion Ustekinumab was deemed safe to progress to efficacy studies by the DSMB at doses used to treat psoriasis in adults with T1D. A 90mg maintenance dosing schedule reduced proinsulin-specific IFN-γ and IL-17A-producing T cells. Further studies are warranted to determine if ustekinumab can prevent C-peptide AUC decline and induce a clinical response
    corecore